东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.
(1)求购买一个甲种足球、一个乙种足球各需多少元;
(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了 ,乙种足球售价比第一次购买时降低了 ,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?
如图,一次函数的图象与反比例函数y1=-(x<0)的图象相交于正A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值;当x>-1时,一次函数值小于反比例函数值
求一次函数的解析式
设函数y2=
(x>0)的图象与y1=-
(x<0)的图象关于y轴对称,在y2=
(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标
已知α是锐角,且sin(α+15°)=。
计算的值。
计算:.
计算
+3tan30°
解不等式5x-12≤2(4x-3),并把它的解集在数轴上表示出来.
设函数y=kx2+(2k+1)x+1(k为实数).写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两个特殊函数的图象
根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明
对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值