游客
题文

某体育场看台的坡面 AB 与地面的夹角是 37 ° ,看台最高点 B 到地面的垂直距离 BC 为3.6米,看台正前方有一垂直于地面的旗杆 DE ,在 B 点用测角仪测得旗杆的最高点 E 的仰角为 33 ° ,已知测角仪 BF 的高度为1.6米,看台最低点 A 与旗杆底端 D 之间的距离为16米( C A D 在同一条直线上).

(1)求看台最低点 A 到最高点 B 的坡面距离;

(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩 G H 之间的距离为1.2米,下端挂钩 H 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数) ( sin 37 ° 0 . 6 cos 37 ° 0 . 8 tan 37 ° 0 . 75 sin 33 ° 0 . 54 cos 33 ° 0 . 84 tan 33 ° 0 . 65 )

科目 数学   题型 计算题   难度 中等
知识点: 解直角三角形的应用-仰角俯角问题
登录免费查看答案和解析
相关试题

某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高 6 % ,求乙班的达标率.

解不等式组,并把解集表示在数轴上.

2 x + 5 3 x + 2 , 1 - 2 x 3 + 1 5 > 0 ,

(1)已知: ΔABC 是等腰三角形,其底边是 BC ,点 D 在线段 AB 上, E 是直线 BC 上一点,且 DEC = DCE ,若 A = 60 ° (如图①).求证: EB = AD

(2)若将(1)中的“点 D 在线段 AB 上”改为“点 D 在线段 AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;

(3)若将(1)中的“若 A = 60 ° ”改为“若 A = 90 ° ”,其它条件不变,则 EB AD 的值是多少?(直接写出结论,不要求写解答过程)

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 的顶点坐标为 ( 2 , 9 ) ,与 y 轴交于点 A ( 0 , 5 ) ,与 x 轴交于点 E B

(1)求二次函数 y = a x 2 + bx + c 的表达式;

(2)过点 A AC 平行于 x 轴,交抛物线于点 C ,点 P 为抛物线上的一点(点 P AC 上方),作 PD 平行于 y 轴交 AB 于点 D ,问当点 P 在何位置时,四边形 APCD 的面积最大?并求出最大面积;

(3)若点 M 在抛物线上,点 N 在其对称轴上,使得以 A E N M 为顶点的四边形是平行四边形,且 AE 为其一边,求点 M N 的坐标.

某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元 / 个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.

(1)求两种球拍每副各多少元?

(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号