游客
题文

(1)已知: ΔABC 是等腰三角形,其底边是 BC ,点 D 在线段 AB 上, E 是直线 BC 上一点,且 DEC = DCE ,若 A = 60 ° (如图①).求证: EB = AD

(2)若将(1)中的“点 D 在线段 AB 上”改为“点 D 在线段 AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;

(3)若将(1)中的“若 A = 60 ° ”改为“若 A = 90 ° ”,其它条件不变,则 EB AD 的值是多少?(直接写出结论,不要求写解答过程)

科目 数学   题型 计算题   难度 较难
知识点: 全等三角形的判定与性质 等腰三角形的判定与性质 等边三角形的判定与性质 等腰直角三角形 三角形综合题
登录免费查看答案和解析
相关试题

如图所示,AO⊥BO于O,CO⊥DO于O,∠BOD=30°,求∠AOC的度数.

如图所示,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设管道的方案.方案一:分别过C,D作AB的垂线,垂足分别为E,F,沿CE,DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么?

如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE和∠AOC.

如图,晚间小明站在距离路灯5m(即BD=5m)的地面上,发现他的影子长DF为4m.已知小明的身高为1.6m,如果小明再向远离路灯的方向走4m,则此时小明的影长是多少?

王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端刚好看到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号