铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第 天 且 为整数)时每盒成本为 元,已知 与 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为 盒, 与 之间的关系如下表所示:
第 天 |
|
|
每天的销售量 盒 |
10 |
|
(1)求 与 的函数关系式;
(2)若每天的销售利润为 元,求 与 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?
(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.
求代数式的值:,其中
.
解不等式:.
计算:
已知在平面直角坐标系中,直线与x轴,y轴相交于A,B两点,直线与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运
动到点A,过点D作x轴的垂线,分别交直线和直线于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; (2)若点正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,
求出D在整个运动过程中s的最大值。
如图点A点B是反比例函数上两点,过这两点的直线 ,且AC∥X轴,AC⊥BC于点C,
①求阴影部分面积(用k的代数式表示);②若BC和AC分别交x轴、y轴于D,E,连接DE,求证△ABC~ △EDC;
③若求出这两个函数解析式。