如图,抛物线 与 轴的两个交点分别为 , ,与 轴交于点 ,点 在 轴正半轴上,且 .
(1)求抛物线的解析式;
(2)如图1,抛物线的顶点为点 ,对称轴交 轴于点 ,连接 , ,请在抛物线的对称轴上找一点 ,使 ,求出点 的坐标;
(3)如图2,过点 作 轴,交抛物线于点 ,连接 ,点 是 轴上一点,在抛物线上是否存在点 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
解下列不等式,并把解集在数轴上表示出来.
-1≥
如图,已知抛物线经过A(1,0),B(0,2)两点,顶点为D.
求抛物线的解析式;
将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图像的函数关系式;
设(2)中平移后,所得抛物线与y轴的交点为
,顶点为
,若点N在平移后的抛物线上,且满足△
的面积是△
面积的2倍,求点N的坐标.
如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.判断0G与CD的位置关系,写出你的结论并证明;
求证:AE=BF;
若OG·DE=3(2-
),求⊙O的面积.
从甲、乙两题中选做一题,如果两题都做,只以甲题计分.甲题:若关于x的一元二次方程
有实数根α、β.求实数k的取值范围;设
,求t的最小值.
乙题:如图,在△ABC 中,点O是AC边上的一个动点,过点O作直
线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.求工程队A原来平均每天维修课桌的张数;
求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.