如图,在 中, ,点 从点 向点 运动,点 从点 沿射线 方向运动,且 ,连接 交 于 .
(1)如图1,当 时,求证: ;
(2)如图2,当 时,① , ,则 ;
②过点 作 于点 ,探究线段 , , 之间的数量关系,直接写出结论,不需证明.
如图, D是△ ABC中 BC边上一点,∠ C=∠ DAC.
(1)尺规作图:作∠ ADB的平分线,交 AB于点 E(保留作图痕迹,不写作法);
(2)在(1)的条件下,求证: DE∥ AC.
如图,在平面直角坐标系中,已知抛物线 y= x 2+ x﹣2与 x轴交于 A, B两点(点 A在点 B的左侧),与 y轴交于点 C,直线 l经过 A, C两点,连接 BC.
(1)求直线 l的解析式;
(2)若直线 x= m( m<0)与该抛物线在第三象限内交于点 E,与直线 l交于点 D,连接 OD.当 OD⊥ AC时,求线段 DE的长;
(3)取点 G(0,﹣1),连接 AG,在第一象限内的抛物线上,是否存在点 P,使∠ BAP=∠ BCO﹣∠ BAG?若存在,求出点 P的坐标;若不存在,请说明理由.
如图,在矩形 ABCD中, AB=3, BC=5, E是 AD上的一个动点.
(1)如图1,连接 BD, O是对角线 BD的中点,连接 OE.当 OE= DE时,求 AE的长;
(2)如图2,连接 BE, EC,过点 E作 EF⊥ EC交 AB于点 F,连接 CF,与 BE交于点 G.当 BE平分∠ ABC时,求 BG的长;
(3)如图3,连接 EC,点 H在 CD上,将矩形 ABCD沿直线 EH折叠,折叠后点 D落在 EC上的点 D'处,过点 D′作 D′ N⊥ AD于点 N,与 EH交于点 M,且 AE=1.
①求 的值;
②连接 BE,△ D' MH与△ CBE是否相似?请说明理由.
如图,在Rt△ ACB中,∠ ACB=90°,以点 A为圆心, AC长为半径的圆交 AB于点 D, BA的延长线交⊙ A于点 E,连接 CE, CD, F是⊙ A上一点,点 F与点 C位于 BE两侧,且∠ FAB=∠ ABC,连接 BF.
(1)求证:∠ BCD=∠ BEC;
(2)若 BC=2, BD=1,求 CE的长及sin∠ ABF的值.
某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?