游客
题文

如图,在平面直角坐标系 xOy 中,抛物线 y = x 2 + 1 4 y 轴相交于点 A ,点 B 与点 O 关于点 A 对称

(1)填空:点 B 的坐标是  

(2)过点 B 的直线 y = kx + b (其中 k < 0 ) x 轴相交于点 C ,过点 C 作直线 l 平行于 y 轴, P 是直线 l 上一点,且 PB = PC ,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;

(3)在(2)的条件下,若点 C 关于直线 BP 的对称点 C ' 恰好落在该抛物线的对称轴上,求此时点 P 的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数综合题
登录免费查看答案和解析
相关试题

画图题
如图,已知线段,用圆规和直尺画图(不用写作法,保留画图痕迹)。

(1)画线段AB,使得
(2)在直线AB外任取一点K,画射线AK和直线BK;
(3)延长KA至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK的和与线段AB的大小。

解方程:(1);(2)

先化简,再求值:,其中

化简
(1)
(2)

计算题
(1)
(2)
(3)
(4)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号