游客
题文

如图, ΔABC 内接于 O BC O 的直径,点 A O 上的定点, AD 平分 BAC O 于点 D DG / / BC ,交 AC 延长线于点 G

(1)求证: DG O 相切;

(2)作 BE AD 于点 E CF AD 于点 F ,试判断线段 BE CF EF 三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).

科目 数学   题型 解答题   难度 中等
知识点: 圆心角、弧、弦的关系 圆周角定理 三角形的外接圆与外心 全等三角形的判定与性质
登录免费查看答案和解析
相关试题

如图,已知半圆O的直径AB,将—个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E.线段BD是否恒等于DE,若是请证明,若不是请说明理由.

已知抛物线C1的解析式为.将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0)。若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:=

阅读下列材料:
我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+Bx+C=0的距离(d)计算公式是:d=

例:求点P(1,2)到直线y= x-的距离d时,先将y= x-化为5x-12y-2=0,再由上述距离公式求得d=
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

如图,已知菱形ABCD中,∠ABC=60°,点P是对称线AC上的一点,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°。求证:∠APE=∠CFP。

已知,点A、B、C在⊙O上,OC⊥AB,∠AOC=40°,点D⊙O上的动点(与点B、C不重合)是则∠BDC的度数是

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号