如图1,在平面直角坐标系中,直线 y = x − 1 与抛物线 y = − x 2 + bx + c 交于 A 、 B 两点,其中 A ( m , 0 ) 、 B ( 4 , n ) ,该抛物线与 y 轴交于点 C ,与 x 轴交于另一点 D .
(1)求 m 、 n 的值及该抛物线的解析式;
(2)如图2,若点 P 为线段 AD 上的一动点(不与 A 、 D 重合),分别以 AP 、 DP 为斜边,在直线 AD 的同侧作等腰直角 ΔAPM 和等腰直角 ΔDPN ,连接 MN ,试确定 ΔMPN 面积最大时 P 点的坐标;
(3)如图3,连接 BD 、 CD ,在线段 CD 上是否存在点 Q ,使得以 A 、 D 、 Q 为顶点的三角形与 ΔABD 相似,若存在,请直接写出点 Q 的坐标;若不存在,请说明理由.
如图,△ABC的中线BD、CE交于点O,F、G分别是BO、CO的中点。 求证:四边形EFGD为平行四边形。
如图,△ABC中 (1)画出△ABC关于x轴对称的△ (2)将△ABC绕原点O旋转180°,画出旋转后的△。
化简求值,其中
解方程:
求不等式组的整数解。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号