为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)
(1)依据折线统计图,得到下面的表格:
射击次序(次 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
甲的成绩(环 |
8 |
9 |
7 |
9 |
8 |
6 |
7 |
|
10 |
8 |
乙的成绩(环 |
6 |
7 |
9 |
7 |
9 |
10 |
8 |
7 |
|
10 |
其中 , ;
(2)甲成绩的众数是 环,乙成绩的中位数是 环;
(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?
(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.
如图,已知在⊙O中,AB、CD是两条弦,且AB⊥CD,于点G,OE⊥BC于点E.
求证:OE=AD.
如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.
如图,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN= cm.
(1)求圆心O到弦MN的距离
(2)猜想OM和AB的位置关系,并说明理由。
⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm.求AB与CD间的距离。
已知:如图,AB是⊙O的直径,AD⊥AB于A, BC⊥AB于B,若∠DOC= 90°.
求证:DC是⊙O的切线.