如图,在 Rt Δ BCD 中, ∠ CBD = 90 ° , BC = BD ,点 A 在 CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF ⊥ EA ,交 CD 所在直线于点 F .
(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: AE = EF ;
(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 AE 与 EF 又有怎样的数量关系?请直接写出你的猜想,不需证明.
上午8时,一条船从海岛A出发,以20海里/时的速度向下北航行,11时到达海岛B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°,求从海岛B到灯塔C的距离.
如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.
如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.
如图,AD∥BC,BD平分∠ABC.求证:AB=AD.
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号