如图,在 中, ,点 在 上,以 为半径的 交 于点 , 的垂直平分线交 于点 ,交 于点 ,连接 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , , ,求线段 的长.
先化简,再求值: ,其中 .
计算: .
在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 , 都是"雁点".
(1)求函数 图象上的"雁点"坐标;
(2)若抛物线 上有且只有一个"雁点" ,该抛物线与 轴交于 、 两点(点 在点 的左侧).当 时.
①求 的取值范围;
②求 的度数;
(3)如图,抛物线 与 轴交于 、 两点(点 在点 的左侧), 是抛物线 上一点,连接 ,以点 为直角顶点,构造等腰 ,是否存在点 ,使点 恰好为"雁点"?若存在,求出点 的坐标;若不存在,请说明理由.
如图, 的顶点坐标分别为 , , ,动点 、 同时从点 出发,分别沿 轴正方向和 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 到达点 时点 、 同时停止运动.过点 作 分别交 、 于点 、 ,连接 、 .设运动时间为 (秒 .
(1)求点 的坐标(用含 的式子表示);
(2)求四边形 面积的最大值或最小值;
(3)是否存在这样的直线 ,总能平分四边形 的面积?如果存在,请求出直线 的解析式;如果不存在,请说明理由;
(4)连接 ,当 时,求点 到 的距离.
如图, 是 的直径, 为 上一点, 为 的中点,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.