游客
题文

如图,已知抛物线 y = a x 2 + bx + c 过点 A ( 3 , 0 ) B ( 2 , 3 ) C ( 0 , 3 ) ,其顶点为 D

(1)求抛物线的解析式;

(2)设点 M ( 1 , m ) ,当 MB + MD 的值最小时,求 m 的值;

(3)若 P 是抛物线上位于直线 AC 上方的一个动点,求 ΔAPC 的面积的最大值;

(4)若抛物线的对称轴与直线 AC 相交于点 N E 为直线 AC 上任意一点,过点 E EF / / ND 交抛物线于点 F ,以 N D E F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;若不能,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 轴对称-最短路线问题 二次函数综合题
登录免费查看答案和解析
相关试题

如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?
(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)

如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆的高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,结果保留整数)

钓鱼岛是中国固有领土,为测量钓鱼岛东西两端A、B的距离,如图,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°.求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,

如图,在电线杆上的C处引拉线CE,CF固定电线杆.拉线CE和地面成60°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果保留根号)

(贵州遵义)如图,一楼房AB后有一假山,其坡度,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米.小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号