游客
题文

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 坐标与图形性质 扇形面积的计算 圆的综合题
登录免费查看答案和解析
相关试题

某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.
(1)设A种货车为辆,运输这批货物的总运费为y万元,试写出y与的关系表达式;
(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;
(3)试说明哪种方案总运费最少?最少运费是多少万元?

如图1,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB与CE交于F,ED与AB、BC分别交于M、H.

图1
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=时,试判断四边形ACDM是什么四边形?并证明你的结论.

图2

如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).

近年来,某县为发展教育事业,加大了对教育经费的投入,2010年投入6000万元,2012年投入8640万元.
(1)求2010年至2012年该县投入教育经费的年平均增长率;
(2)该县预计2013年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.

某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:

(1)这次数学知识竞赛获得二等奖人数是多少?
(2)请将条形统计图补充完整;
(3)若给所有参赛学生每人发一张卡片,各自写自己名字,然后把卡片放入一个不透明的袋子内,摇匀后任意摸取一张卡片,求摸出的卡片上是写有一等奖学生名字的概率。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号