游客
题文

如图,海上观察哨所 B 位于观察哨所 A 正北方向,距离为25海里.在某时刻,哨所 A 与哨所 B 同时发现一走私船,其位置 C 位于哨所 A 北偏东 53 ° 的方向上,位于哨所 B 南偏东 37 ° 的方向上.

(1)求观察哨所 A 与走私船所在的位置 C 的距离;

(2)若观察哨所 A 发现走私船从 C 处以16海里 / 小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东 76 ° 的方向前去拦截,求缉私艇的速度为多少时,恰好在 D 处成功拦截.(结果保留根号)

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 tan 76 ° 4 )

科目 数学   题型 计算题   难度 中等
知识点: 解直角三角形的应用-方向角问题
登录免费查看答案和解析
相关试题

计算: 2 × 6 - ( 3 + 1 ) 2

若一次函数 y = - 3 x - 3 的图象与 x 轴, y 轴分别交于 A C 两点,点 B 的坐标为 ( 3 , 0 ) ,二次函数 y = a x 2 + bx + c 的图象过 A B C 三点,如图(1).

(1)求二次函数的表达式;

(2)如图(1),过点 C CD / / x 轴交抛物线于点 D ,点 E 在抛物线上 ( y 轴左侧),若 BC 恰好平分 DBE .求直线 BE 的表达式;

(3)如图(2),若点 P 在抛物线上(点 P y 轴右侧),连接 AP BC 于点 F ,连接 BP S ΔBFP = m S ΔBAF

①当 m = 1 2 时,求点 P 的坐标;

②求 m 的最大值.

如图,二次函数 y = a x 2 + bx + 4 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,其对称轴与线段 BC 交于点 E ,垂直于 x 轴的动直线 l 分别交抛物线和线段 BC 于点 P 和点 F ,动直线 l 在抛物线的对称轴的右侧(不含对称轴)沿 x 轴正方向移动到 B 点.

(1)求出二次函数 y = a x 2 + bx + 4 BC 所在直线的表达式;

(2)在动直线 l 移动的过程中,试求使四边形 DEFP 为平行四边形的点 P 的坐标;

(3)连接 CP CD ,在动直线 l 移动的过程中,抛物线上是否存在点 P ,使得以点 P C F 为顶点的三角形与 ΔDCE 相似?如果存在,求出点 P 的坐标;如果不存在,请说明理由.

(1)解方程: x x + 2 = 2 x 1 + 1

(2)解不等式组: 2 x 4 > 0 x + 1 4 ( x 2 )

(1) 计算: 2 1 + ( 2018 π ) 0 sin 30 °

(2) 化简: ( a + 1 ) 2 a ( a + 1 ) 1

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号