先化简,再求值: ,其中 .
计算: .
已知抛物线 过点 , 两点,与 轴交于点 , .
(1)求抛物线的解析式及顶点 的坐标;
(2)过点 作 ,垂足为 ,求证:四边形 为正方形;
(3)点 为抛物线在直线 下方图形上的一动点,当 面积最大时,求点 的坐标;
(4)若点 为线段 上的一动点,问: 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“ :文明礼仪, :生态环境, :交通安全, :卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.
(1)本次随机调查的学生人数是 人;
(2)请你补全条形统计图;
(3)在扇形统计图中,“ ”所在扇形的圆心角等于 度;
(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.
如图, 为 的直径,且 ,点 是 上的一动点(不与 , 重合),过点 作 的切线交 的延长线于点 ,点 是 的中点,连接 .
(1)求证: 是 的切线;
(2)当 时,求阴影部分面积.