如图,已知抛物线 过点 , ,过定点 的直线 与抛物线交于 、 两点,点 在点 的右侧,过点 作 轴的垂线,垂足为 .
(1)求抛物线的解析式;
(2)当点 在抛物线上运动时,判断线段 与 的数量关系 、 、 ,并证明你的判断;
(3) 为 轴上一点,以 、 、 、 为顶点的四边形是菱形,设点 ,求自然数 的值;
(4)若 ,在直线 下方的抛物线上是否存在点 ,使得 的面积最大?若存在,求出点 的坐标及 的最大面积;若不存在,请说明理由.
如图,已知 ,垂足为 , , ,将线段 绕点 按逆时针方向旋转 ,得到线段 ,连接 , .
(1)线段 ;
(2)求线段 的长度.
(1)解方程:
(2)解不等式组: .
计算:
(1)
(2) .
如图,已知矩形 中, , ,动点 从点 出发,在边 上以每秒1个单位的速度向点 运动,连接 ,作点 关于直线 的对称点 ,设点 的运动时间为 .
(1)若 ,求当 , , 三点在同一直线上时对应的 的值.
(2)已知 满足:在动点 从点 到点 的整个运动过程中,有且只有一个时刻 ,使点 到直线 的距离等于3,求所有这样的 的取值范围.
如图,以原点 为圆心,3为半径的圆与 轴分别交于 , 两点(点 在点 的右边), 是半径 上一点,过 且垂直于 的直线与 分别交于 , 两点(点 在点 的上方),直线 , 交于点 .若 .
(1)求点 的坐标;
(2)求过点 和点 ,且顶点在直线 上的抛物线的函数表达式.