游客
题文

如图,已知抛物线 y = a x 2 + c 过点 ( - 2 , 2 ) ( 4 , 5 ) ,过定点 F ( 0 , 2 ) 的直线 l : y = kx + 2 与抛物线交于 A B 两点,点 B 在点 A 的右侧,过点 B x 轴的垂线,垂足为 C

(1)求抛物线的解析式;

(2)当点 B 在抛物线上运动时,判断线段 BF BC 的数量关系 ( > < = ) ,并证明你的判断;

(3) P y 轴上一点,以 B C F P 为顶点的四边形是菱形,设点 P ( 0 , m ) ,求自然数 m 的值;

(4)若 k = 1 ,在直线 l 下方的抛物线上是否存在点 Q ,使得 ΔQBF 的面积最大?若存在,求出点 Q 的坐标及 ΔQBF 的最大面积;若不存在,请说明理由.

科目 数学   题型 计算题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

(1)计算: 2 tan 60 ° 12 ( 3 2 ) 0 + ( 1 3 ) 1

(2)解方程: x 2 2 x 1 = 0

计算: | 2 | 9 + 2 3 ( 1 π ) 0

先化简,再求值: ( x 1 ) 2 + x ( 3 x ) ,其中 x = 1 2

解不等式组: x 3 + 2 < x 2 x + 2 3 ( x 1 )

计算: 8 + ( 2018 ) 0 4 sin 45 ° + | 2 |

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号