游客
题文

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2

(1)求抛物线的解析式;

(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;

(3)连接 OB ,点 P x 轴下方抛物线上一动点,过点 P OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.

(坐标平面内两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )

科目 数学   题型 计算题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

先化简,再求值.,其中

化简:

化简:,并选择一个你喜欢的数代入求值。

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.
求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.
当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

解方程:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号