如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2 .
(1)求抛物线的解析式;
(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 , x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;
(3)连接 OB ,点 P 为 x 轴下方抛物线上一动点,过点 P 作 OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.
(坐标平面内两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )
先化简,再求值.,其中.
化简:.
化简:,并选择一个你喜欢的数代入求值。
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式. 求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
解方程:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号