中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为 , , , 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:
(1)参加比赛的学生共有 名;
(2)在扇形统计图中, 的值为 ,表示“ 等级”的扇形的圆心角为 度;
(3)组委会决定从本次比赛获得 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
如图,四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积。
计算
(1)(2)(
+
)2
(3)(4)
已知O为直线AB上的一点,∠COE是直角, OF 平分∠AOE.
(1)如图①,若∠COF=34°,则∠BOE=°;若∠COF=m°,则∠BOE=°;由上面的解答可知:∠BOE与∠COF之间的数量关系应该为.
(2)如图②,(1)中∠BOE与∠COF之间的数量关系是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图③,在(2)的情况下,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.
观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1="16=" 42;4×6+1=25=52,……
(1)请根据你发现的规律填空:6×8+1=;
(2)用含n的等式表示上面的规律:;
(3)用找到的规律解决下面的问题:
计算:(1+)(1+
)(1+
)(1+
)…(1+
)
(1)已知数在数轴上对应的点如图所示,化简:
;
(2)已知,求
的值.