如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) , B ( − 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD .
(1)求抛物线的解析式.
(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.
(3)在(2)的条件下,作 PF ⊥ x 轴于 F ,点 M 为 x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F , N , G , M 四点为顶点的四边形为正方形时,求点 M 的坐标.
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.
关于的一元二次方程,其根的判别式的值为1,求m的值及该方程的根.
用适当的方法解下列方程:(10分,每小题5分) (1)(2).
计算与化简:(15分,每小题5分) (1) (2)(a>0) (3)( )
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号