小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验:
(1)已知抛物线 经过点 ,则 ,顶点坐标为 ,该抛物线关于点 成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 ,以 轴上的点 为中心,作该抛物线关于点 中心对称的抛物线 ,则我们又称抛物线 为抛物线 的“衍生抛物线”,点 为“衍生中心”.
(2)已知抛物线 关于点 的衍生抛物线为 ,若这两条抛物线有交点,求 的取值范围.
问题解决:
(3)已知抛物线
①若抛物线 的衍生抛物线为 ,两抛物线有两个交点,且恰好是它们的顶点,求 、 的值及衍生中心的坐标;
②若抛物线 关于点 的衍生抛物线为 ,其顶点为 ;关于点 的衍生抛物线为 ,其顶点为 ; ;关于点 的衍生抛物线为 ,其顶点为 为正整数).求 的长(用含 的式子表示).
如图,抛物线 与 轴交于 , 两点(点 在点 的左边).直线 分别交 轴, 轴于 , 两点,且除了点 之外,该直线与抛物线没有其它任何交点.
(1)求 , 两点的坐标;
(2)求 , 的值;
(3)设点 是抛物线上的动点,过点 作直线 的垂线,垂足为 ,交抛物线的对称轴于点 ,求 的最小值.并求出此时点 的坐标.
如图,已知 为 的角平分线, , ,以 为圆心, 为半径的圆分别交 , 于点 , ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求 的值;
(3)求 的值.
如图,直线 与反比例函数 的图象交于 , 两点,过 作 轴于点 ,过 作 轴于点 ,
(1)求 , 的值及反比例函数的解析式;
(2)请问:在直线 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图, 在正方形 中, , 分别为 , 边上的点, , 交于点 ,且 .
(1) 求证: ;
(2) 若 , ,求正方形 的面积 .
学校要组织去春游,小陈用50元负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为6元 件,问:小陈最多能买第二种食品多少件?