游客
题文

小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线 y = x 2 + bx 3 经过点 ( 1 , 0 ) ,则 b =   ,顶点坐标为  ,该抛物线关于点 ( 0 , 1 ) 成中心对称的抛物线表达式是  

抽象感悟:

我们定义:对于抛物线 y = a x 2 + bx + c ( a 0 ) ,以 y 轴上的点 M ( 0 , m ) 为中心,作该抛物线关于点 M 中心对称的抛物线 y ' ,则我们又称抛物线 y ' 为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.

(2)已知抛物线 y = x 2 2 x + 5 关于点 ( 0 , m ) 的衍生抛物线为 y ' ,若这两条抛物线有交点,求 m 的取值范围.

问题解决:

(3)已知抛物线 y = a x 2 + 2 ax b ( a 0 )

①若抛物线 y 的衍生抛物线为 y ' = b x 2 2 bx + a 2 ( b 0 ) ,两抛物线有两个交点,且恰好是它们的顶点,求 a b 的值及衍生中心的坐标;

②若抛物线 y 关于点 ( 0 , k + 1 2 ) 的衍生抛物线为 y 1 ,其顶点为 A 1 ;关于点 ( 0 , k + 2 2 ) 的衍生抛物线为 y 2 ,其顶点为 A 2 ;关于点 ( 0 , k + n 2 ) 的衍生抛物线为 y n ,其顶点为 A n ( n 为正整数).求 A n A n + 1 的长(用含 n 的式子表示).

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,抛物线 y = 1 4 x 2 1 2 x + 3 4 x 轴交于 A C 两点(点 A 在点 C 的左边).直线 y = kx + b ( k 0 ) 分别交 x 轴, y 轴于 A B 两点,且除了点 A 之外,该直线与抛物线没有其它任何交点.

(1)求 A C 两点的坐标;

(2)求 k b 的值;

(3)设点 P 是抛物线上的动点,过点 P 作直线 kx + b ( k 0 ) 的垂线,垂足为 H ,交抛物线的对称轴于点 D ,求 PH + DH 的最小值.并求出此时点 P 的坐标.

如图,已知 AO Rt Δ ABC 的角平分线, ACB = 90 ° AC BC = 4 3 ,以 O 为圆心, OC 为半径的圆分别交 AO BC 于点 D E ,连接 ED 并延长交 AC 于点 F

(1)求证: AB O 的切线;

(2)求 tan CAO 的值;

(3)求 AD CF 的值.

如图,直线 y = x + 2 与反比例函数 y = k x ( k 0 ) 的图象交于 A ( 1 , m ) B ( n , 1 ) 两点,过 A AC x 轴于点 C ,过 B BD x 轴于点 D

(1)求 m n 的值及反比例函数的解析式;

(2)请问:在直线 y = x + 2 上是否存在点 P ,使得 S ΔPAC = S ΔPBD ?若存在,求出点 P 的坐标;若不存在,请说明理由.

如图, 在正方形 ABCD 中, E F 分别为 AD CD 边上的点, BE AF 交于点 O ,且 AE = DF

(1) 求证: ΔABE ΔDAF

(2) 若 BO = 4 OE = 2 ,求正方形 ABCD 的面积 .

学校要组织去春游,小陈用50元负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为6元 / 件,问:小陈最多能买第二种食品多少件?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号