如图1,四边形 是矩形,点 的坐标为 ,点 的坐标为 ,点 从点 出发,沿 以每秒1个单位长度的速度向点 运动,同时点 从点 出发,沿 以每秒2个单位长度的速度向点 运动,当点 与点 重合时运动停止.设运动时间为 秒.
(1)当 时,线段 的中点坐标为 ;
(2)当 与 相似时,求 的值;
(3)当 时,抛物线 经过 , 两点,与 轴交于点 ,抛物线的顶点为 ,如图2所示,问该抛物线上是否存在点 ,使 ?若存在,求出所有满足条件的 的坐标;若不存在,说明理由.
如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是AB上的任意一点,过点C的切线分别交PA、PB于点D、E.若PA=4,求△PED的周长.
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;
①将△ABC向x轴正方向平移5个单位得△A1B1C1,
②将△ABC再以O为旋转中心,旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明对应字母.
解下列方程(每小题4分,共8分)
(1)(用配方法)
(2)
在平面直角坐标系xOy中,已知抛物线C1:(
)与抛物线C2:
,
(1)抛物线C1与轴交于点A,其对称轴与
轴交于点B.求点A,B的坐标;
(2)若抛物线C1在这一段位于C2下方,并且抛物线C1在
这一段位于C2上方,求抛物线C1的解析式.
已知:△ABC是⊙O的内接三角形,AB=AC,在∠BAC所对弧AC上,任取一点D,连接AD,BD,CD,
(1)如图1,∠BAC=,直接写出∠ADB的大小(用含
的式子表示);
(2)如图2,如果BAC=60°,求证:BD+CD=AD;
(3)如图3,如果BAC=120°,那么BD+CD与AD之间的数量关系是什么?写出猜测并加以证明.