游客
题文

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

科目 数学   题型 解答题   难度 中等
知识点: 作图—基本作图 线段垂直平分线的性质 直角三角形的性质 勾股定理的逆定理
登录免费查看答案和解析
相关试题

(本题满分l2分)⊙O直径AB=4,∠ABC=30°,BC=4。D是线段BC中点,

(1)试判断D与⊙O的位置关系并说明理由;
(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O切线。

某超市的某种商品现在的售价为每件50元,每周可以卖出500件。现市场调查反映:如果调整价格,每涨价1元,每周要少卖出10件。已知该种商品的进价为每件40元,问如何定价,才能使利润最大?最大利润是多少?(每件商品的利润=售价-进价)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号