阅读与思考
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
年 月 日星期日 没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 ,现根据木板的情况,要过 上的一点 ,作出 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢? 办法一:如图①,可利用一把有刻度的直尺在 上量出 ,然后分别以 , 为圆心,以 与 为半径画圆弧,两弧相交于点 ,作直线 ,则 必为 . 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 , 两点,然后把木棒斜放在木板上,使点 与点 重合,用铅笔在木板上将点 对应的位置标记为点 ,保持点 不动,将木棒绕点 旋转,使点 落在 上,在木板上将点 对应的位置标记为点 .然后将 延长,在延长线上截取线段 ,得到点 ,作直线 ,则 . 我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? |
任务:
(1)填空:“办法一”依据的一个数学定理是 ;
(2)根据“办法二”的操作过程,证明 ;
(3)①尺规作图:请在图③的木板上,过点 作出 的垂线(在木板上保留作图痕迹,不写作法);
②说明你的作法所依据的数学定理或基本事实(写出一个即可).
如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F.
(1)若△APD为等腰直角三角形,求点P的坐标;
(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.
甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;
(2)求乙跑步的速度及乙在途中等候甲的时间;
(3)求乙出发多长时间第一次与甲相遇?
如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)求证:BF=AE+FG;
(2)若AB=2,求四边形ABFG的面积.
在平面直角坐标系系xOy中,直线y=2x+m与y轴交于点A,与直线y=﹣x+4交于点B(3,n),P为直线y=﹣x+4上一点.
(1)求m,n的值;
(2)当线段AP最短时,求点P的坐标.
已知:关于x的方程mx2+(m﹣3)x﹣3=0(m≠0).
(1)求证:方程总有两个实数根;
(2)如果m为正整数,且方程的两个根均为整数,求m的值.