如图,在 Rt Δ ABC 中, ∠ BAC = 90 ° , AB = AC ,点 D 是 BC 边上一动点,连接 AD ,把 AD 绕点 A 逆时针旋转 90 ° ,得到 AE ,连接 CE , DE .点 F 是 DE 的中点,连接 CF .
(1)求证: CF = 2 2 AD ;
(2)如图2所示,在点 D 运动的过程中,当 BD = 2 CD 时,分别延长 CF , BA ,相交于点 G ,猜想 AG 与 BC 存在的数量关系,并证明你猜想的结论;
(3)在点 D 运动的过程中,在线段 AD 上存在一点 P ,使 PA + PB + PC 的值最小.当 PA + PB + PC 的值取得最小值时, AP 的长为 m ,请直接用含 m 的式子表示 CE 的长.
设 a , b , c , d 为四个不同的实数,若 a , b 为方程 x 2 - 10 cx - 11 d = 0 的根, c , d 为方程 x 2 - 10 ax - 11 b = 0 的根,求 a + b + c + d 的值.
若关于 x 的方程 x 2 - ( a - 3 ) x + a - 2 = 0 有两个不相等的整数根,求 a 的值.
定义:如果一元二次方程 a x 2 + bx + c = 0 ( a ≠ 0 ) 满足 a + b + c = 0 ,那么我们称这个方程为“凤凰方程”,已知 a x 2 + bx + c = 0 ( a ≠ 0 ) 是“凤凰方程”,且有两个相等的实数根,求 a , b , c 之间的关系.
已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.
设 m 是不小于 - 1 的实数,关于 x 的方程 x 2 + 2 ( m - 2 ) x + m 2 - 3 m + 3 = 0 有两个不相等的实数根 x 1 , x 2 .
(1)若 x 1 2 + x 2 2 = 6 ,求 m 的值;
(2)求 m x 1 2 1 - x 1 + m x 2 2 1 - x 2 的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号