如图,在平面直角坐标系中,已知二次函数 图象的顶点为 ,与 轴交于点 ,异于顶点 的点 在该函数图象上.
(1)当 时,求 的值.
(2)当 时,若点 在第一象限内,结合图象,求当 时,自变量 的取值范围.
(3)作直线 与 轴相交于点 .当点 在 轴上方,且在线段 上时,求 的取值范围.
某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
A |
B |
|
进价(元/件) |
1200 |
1000 |
售价(元/件) |
1380 |
1200 |
(注:获利=售价-进价)
(1) 该商场购进A、B两种商品各多少件?
(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?
请你画出一个以BC为底边的等腰ΔABC,使底边上的高AD=BC.
(1)求tanB和 sinB的值;
(2)在你所画的等腰ΔABC中设底边BC=5米,求腰上的高BE.
如图,ABCD是边长为1的正方形,其中、
、
的圆心依次是点A、B、C.
(1)求点D沿三条圆弧运动到G所经过的路线长;
(2)判断直线GB与DF的位置关系,并说明理由.
张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.
下图是2006年某省各类学校在校生数情况制作的扇形统计图和不完整的条形统计图.
已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:
(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万)
(2)补全条形统计图;
(3)请你写出一条合理化建议.