如图所示,一倾角为 的固定斜面的底端安装一弹性挡板, 、 两物块的质量分别为 和 , 静止于斜面上 处。某时刻, 以沿斜面向上的速度 与 发生弹性碰撞。 与斜面间的动摩擦因数等于 ,设最大静摩擦力等于滑动摩擦力。 与斜面间无摩擦,与挡板之间的碰撞无动能损失。两物块均可以看作质点,斜面足够长, 的速度减为零之前 不会与之发生碰撞。重力加速度大小为 。
(1)求 与 第一次碰撞后瞬间各自的速度大小 、 ;
(2)求第 次碰撞使物块 上升的高度 ;
(3)求物块 从 点上升的总高度 ;
(4)为保证在 的速度减为零之前 不会与之发生碰撞,求 点与挡板之间的最小距离 。

一个物体从塔顶上下落,在到达地面前最后1 s内通过的位移是整个位移的
,求:塔高为多少米?(g=10m/s2)
一辆汽车在平直公路上做匀变速直线运动,公路边每隔15m有一棵树,如图所示,汽车通过AB两相邻的树用了3s,通过BC两相邻的树用了2s,求汽车运动的加速度和通过树B时的速度为多少?
一劲度系数k=800 N/m的轻质弹簧两端分别连接着质量均为12 kg的物体A、B,将它们竖直静止放在水平面上,如图所示.现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经0.40 s物体B刚要离开地面.g=10 m/s2,
试求:
(1)物体B刚要离开地面时,A物体的速度vA;
(2)物体A重力势能的改变量;
如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的
光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数
=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度(
)时,滑块距离木板左端的长度是多少?
如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度v飞离桌面,最终落在水平地面上。已知l=1.4m,v=3.0m/s,m=0.10kg,物块与桌面间的动摩擦因数
=0.25,桌面高h=0.45m,不计空气阻力,重力加速度g取10m/s2.求:
(1)小物块落地点距飞出点的水平距离s;
(2)小物块的初速度大小v0.