某快递公司为了提高工作效率,计划购买 、 两种型号的机器人来搬运货物,已知每台 型机器人比每台 型机器人每天多搬运20吨,并且3台 型机器人和2台 型机器人每天共搬运货物460吨.
(1)求每台 型机器人和每台 型机器人每天分别搬运货物多少吨?
(2)每台 型机器人售价3万元,每台 型机器人售价2万元,该公司计划采购 、 两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出 、 两种机器人分别采购多少台时,所需费用最低?最低费用是多少?
如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,D(,0).动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.
(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)在第一象限的抛物线上取一点G,使得=
,再在抛物线上找点E(不与点A、B、C重合),使得∠GBE=45°,求E点的坐标.
问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.
探究:
请您结合图2给予证明,
归纳:
圆外一点到圆上各点的最短距离是:这点到连接这点与圆心连线与圆交点之间的距离.
图中有圆,直接运用:
如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.
图中无圆,构造运用:
如图4,在边长为2的菱形中,∠
=60°,
是
边的中点,
是
边上一动点,将△
沿
所在的直线翻折得到△
,连接
,请求出
长度的最小
值.
解:由折叠知,又M是AD的中点,可得
,故点
在以AD为直径的圆上.如图8,以点M为圆心,MA为半径画⊙M,过M作MH⊥CD,垂足为H,(请继续完成下列解题过程)
迁移拓展,深化运用:
如图6,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.
两会期间,环保问题受到与会代表的广泛关注.近期多地纯电动出租车正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.
车型 |
起步公里数 |
起步价格 |
超出起步公里数后的单价 |
普通燃油型 |
3 |
9元+2元(燃油附加费) |
2.4元/公里 |
纯电动型 |
2.5 |
9元 |
2.9元/公里 |
设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.
(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;
(2)在如下的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;
(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.
小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x件.
(1)当x=12时,小丽购买的这种服装的单价为;
(2)小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20cm,AM=8cm,MB=MN.我们把∠ANB叫做倾斜角.
(1)当倾斜角为45°时,求CN的长;
(2)按设计要求,倾斜角能小于30°吗?请说明理由.