如图,抛物线 与直线 相交于点 和点 .
(1)求 和 的值;
(2)求点 的坐标,并结合图象写出不等式 的解集;
(3)点 是直线 上的一个动点,将点 向左平移3个单位长度得到点 ,若线段 与抛物线只有一个公共点,直接写出点 的横坐标 的取值范围.
已知锐角 的外接圆圆心为 ,半径为 .
(1)求证: ;
(2)若 中 , , ,求 的长及 的值.
高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.
(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;
(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;
(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?
如图,已知平行四边形 中, , , .
(1)求平行四边形 的面积;
(2)求证: .
先化简,再求值: ,其中 , .
如图,已知抛物线 经过点 、 .
(1)求抛物线的解析式,并写出顶点 的坐标;
(2)若点 在抛物线上,且点 的横坐标为8,求四边形 的面积;
(3)定点 在 轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点 在新的抛物线上运动,求定点 与动点 之间距离的最小值 (用含 的代数式表示)