游客
题文

如图,抛物线 y = a x 2 + bx + c x 轴交于原点 O 和点 A ,且其顶点 B 关于 x 轴的对称点坐标为 ( 2 , 1 )

(1)求抛物线的函数表达式;

(2)抛物线的对称轴上存在定点 F ,使得抛物线 y = a x 2 + bx + c 上的任意一点 G 到定点 F 的距离与点 G 到直线 y = - 2 的距离总相等.

①证明上述结论并求出点 F 的坐标;

②过点 F 的直线 l 与抛物线 y = a x 2 + bx + c 交于 M N 两点.

证明:当直线 l 绕点 F 旋转时, 1 MF + 1 NF 是定值,并求出该定值;

(3)点 C ( 3 , m ) 是该抛物线上的一点,在 x 轴, y 轴上分别找点 P Q ,使四边形 PQBC 周长最小,直接写出 P Q 的坐标.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

某中学开展“中国梦、我的梦”演讲比赛,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.

(1)根据下图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?

已知关于x的方程
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)当=3时,△ABC的每条边长恰好都是方程的根,求△ABC的周长.

当a=时,求的值.

解方程:
(1)2x2=5x(2)m2+3m-1=0(3)9(x+1)2-(x-2)2=0

如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线(a≠0,x>0)分别交于D、E两点.

(1)若点D的坐标为(4,1),点E的坐标为(1,4):
① 分别求出直线l与双曲线的解析式;
② 若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号