某海域有一小岛 ,在以 为圆心,半径 为 海里的圆形海域内有暗礁.一海监船自西向东航行,它在 处测得小岛 位于北偏东 的方向上,当海监船行驶 海里后到达 处,此时观测小岛 位于 处北偏东 方向上.
(1)求 , 之间的距离 ;
(2)若海监船由 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
关于 的一元二次方程 有两个不相等的实数根.
(1)求 的取值范围;
(2)写出一个满足条件的 的值,并求此时方程的根.
如图,四边形 是平行四边形, 平分 ,交 的延长线于点 .求证: .
设抛物线的解析式为 ,过点 作 轴的垂线,交抛物线于点 ;过点 , 作 轴的垂线,交抛物线于点 ; ;过点 , 为正整数)作 轴的垂线,交抛物线于点 ,连接 ,得 △ .
(1)求 的值;
(2)直接写出线段 , 的长(用含 的式子表示);
(3)在系列 △ 中,探究下列问题:
①当 为何值时, △ 是等腰直角三角形?
②设 , 均为正整数),问:是否存在 △ 与 △ 相似?若存在,求出其相似比;若不存在,说明理由.
如图,将正 边形绕点 顺时针旋转 后,发现旋转前后两图形有另一交点 ,连接 ,我们称 为"叠弦";再将"叠弦" 所在的直线绕点 逆时针旋转 后,交旋转前的图形于点 ,连接 ,我们称 为"叠弦角", 为"叠弦三角形".
[探究证明]
(1)请在图1和图2中选择其中一个证明:"叠弦三角形" 是等边三角形;
(2)如图2,求证: .
[归纳猜想]
(3)图1、图2中的"叠弦角"的度数分别为 , ;
(4)图 中,"叠弦三角形" 等边三角形(填"是"或"不是"
(5)图 中,"叠弦角"的度数为 (用含 的式子表示)
如图1是一副创意卡通圆规,图2是其平面示意图, 是支撑臂, 是旋转臂,使用时,以点 为支撑点,铅笔芯端点 可绕点 旋转作出圆.已知 .
(1)当 时,求所作圆的半径;(结果精确到
(2)保持 不变,在旋转臂 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到
(参考数据: , , , ,可使用科学计算器)