如图,在 中, , .
(1)通过观察尺规作图的痕迹,可以发现直线 是线段 的 ,射线 是 的 ;
(2)在(1)所作的图中,求 的度数.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图, 、 分别是 的直径和弦, 于点 .过点 作 的切线与 的延长线交于点 , 、 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求线段 的长.
如图,为了测量山坡上一棵树 的高度,小明在点 处利用测角仪测得树顶 的仰角为 ,然后他沿着正对树 的方向前进 到达点 处,此时测得树顶 和树底 的仰角分别是 和 ,设 垂直于 ,且垂足为 .
(1)求 的度数;
(2)求树 的高度(结果精确到 , .
某种型号汽车油箱容量为 ,每行驶 耗油 .设一辆加满油的该型号汽车行驶路程为 ,行驶过程中油箱内剩余油量为 .
(1)求 与 之间的函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的 ,按此建议,求该辆汽车最多行驶的路程.
有2部不同的电影 、 ,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择 电影的概率;
(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).