学习了图形的旋转之后,小明知道,将点 绕着某定点 顺时针旋转一定的角度 ,能得到一个新的点 ,经过进一步探究,小明发现,当上述点 在某函数图象上运动时,点 也随之运动,并且点 的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点 的坐标、角度 的大小来解决相关问题.
【初步感知】
如图1,设 , ,点 是一次函数 图象上的动点,已知该一次函数的图象经过点 .
(1)点 旋转后,得到的点 的坐标为 ;
(2)若点 的运动轨迹经过点 ,求原一次函数的表达式.
【深入感悟】
如图2,设 , ,点 是反比例函数 的图象上的动点,过点 作二、四象限角平分线的垂线,垂足为 ,求 的面积.
【灵活运用】
如图3,设 , ,点 是二次函数 图象上的动点,已知点 、 ,试探究 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
如图,已知 , , .请用尺规作图法,在 边上求作一点 ,使 .(保留作图痕迹,不写作法,答案不唯一)
解分式方程: .
解不等式组:
如图1(注:与图2完全相同)所示,抛物线 经过 、 两点,与 轴的另一个交点为 ,与 轴相交于点 .
(1)求抛物线的解析式.
(2)设抛物线的顶点为 ,求四边形 的面积.(请在图1中探索)
(3)设点 在 轴上,点 在抛物线上.要使以点 、 、 、 为顶点的四边形是平行四边形,求所有满足条件的点 的坐标.(请在图2中探索)
在 中, , 交 的延长线于点 .
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 ,一条直角边与 重合,另一条直角边恰好经过点 .通过观察、测量 与 的长度,得到 .请给予证明.
猜想论证:
(2)当三角尺沿 方向移动到图2所示的位置时,一条直角边仍与 边重合,另一条直角边交 于点 ,过点 作 垂足为 .此时请你通过观察、测量 、 与 的长度,猜想并写出 、 与 之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿 方向继续移动到图3所示的位置(点 在线段 上,且点 与点 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)