课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;
类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).
抛物线交
轴于
两点,交
轴于点
,已知抛物线的对称轴为直线
,
.
(1)求二次函数
的解析式;
(2)在抛物线对称轴上是否存在一点
,使点
到
两点距离之差最大?若存在,求出
点坐标;若不存在,请说明理由;
(3)平行于
轴的一条直线交抛物线于
两点,若以
为直径的圆恰好与
轴相切,求此圆的半径.
已知:如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B、C两点的坐标;
(2)求直线CD的函数解析式;
(3)设E、F分别是线段AB、AD上的两个动点,且EF平分四边形ABCD的周长.
试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?
已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2−bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;
(2)求代数式
的值;
(3)求证:关于x的一元二次方程ax2−bx+c="0" ②必有两个不相等的实数根.
.已知如图,正方形AEDG的两个顶点A、D都在⊙O上,AB为⊙O直径,射线线ED与⊙O的另一个交点为C,试判断线段AC与线段BC的关系.
.用尺规作图找出该残片所在圆的圆心O的位置.
(保留作图痕迹,不写作法)