游客
题文

数学课上,有这样一道探究题.

如图,已知 ΔABC 中, AB = AC = m BC = n BAC = α ( 0 ° < α < 180 ° ) ,点 P 为平面内不与点 A C 重合的任意一点,连接 CP ,将线段 CP 绕点 P 顺时针旋转 a ,得线段 PD ,连接 CD AP E F 分别为 BC CD 的中点,设直线 AP 与直线 EF 相交所成的较小角为 β ,探究 EF AP 的值和 β 的度数与 m n a 的关系.

请你参与学习小组的探究过程,并完成以下任务:

(1)填空:

【问题发现】

小明研究了 α = 60 ° 时,如图1,求出了 EF PA 的值和 β 的度数分别为 EF PA =    β =   

小红研究了 α = 90 ° 时,如图2,求出了 EF PA 的值和 β 的度数分别为 EF PA =    β =   

【类比探究】

他们又共同研究了 α = 120 ° 时,如图3,也求出了 EF PA 的值和 β 的度数;

【归纳总结】

最后他们终于共同探究得出规律: EF PA =   (用含 m n 的式子表示); β =   (用含 α 的式子表示).

(2)求出 α = 120 ° EF PA 的值和 β 的度数.

科目 数学   题型 解答题   难度 困难
知识点: 旋转的性质 相似三角形的判定与性质 相似形综合题
登录免费查看答案和解析
相关试题

一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?

如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.
在图中画出线段DE和DF;
连接EF,则线段AD和EF互相垂直平分,这是为什么?

如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
求证:△ACD∽△BAC;
求DC的长;
设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

如图,已知⊙O的直径AB垂直于弦CD,垂足为E,F为CD延长线上一点,AF交⊙O于点G.求证:AC2=AG·AF

如图,直线y=x-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2).
求抛物线的解析式;
求不等式x2+bx+c<x-1的解集(直接写出答案).
设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号