如图,已知正方形 ,点 是 边上一点,将 沿直线 折叠,点 落在 处,连接 并延长,与 的平分线相交于点 ,与 , 分别相交于点 , ,连接 .
(1)求证: ;
(2)若 , ,求点 到直线 的距离;
(3)当点 在 边上(端点除外)运动时, 的大小是否变化?为什么?
(本题7分)化简求值.
已知:,求式子
的值.
本题6分)如图,平面直角坐标系中,
(1)取点A(2,1)、点B(-3,4),则线段AB的长为;
(2)若点A的坐标为A(,
),点B的坐标为A(
,
),则线段AB的长为(用含
、
、
、
的式子表示);
(3)△ABC中,已知点A(2,-2)、点B(-3,-1)、点C(-1、-4),请运用(2)中的结论,不画图,用代数方法判断并证明△ABC的形状.
(本题7分)如图,长方形纸片ABCD中,AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,EF=3,求AB的长.
(本题6分)在实数范围内分解因式:(1);(2)
.
(本题12分)已知抛物线y=+c与x轴交于A(-1,0),B两点,交y轴于点C
(1)求抛物线的解析式
(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长