游客
题文

如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A B C 三点.

(1)求证: ACB = 90 °

(2)点 D 是第一象限内该抛物线上的动点,过点 D x 轴的垂线交 BC 于点 E ,交 x 轴于点 F

①求 DE + BF 的最大值;

②点 G AC 的中点,若以点 C D E 为顶点的三角形与 ΔAOG 相似,求点 D 的坐标.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 二次函数综合题
登录免费查看答案和解析
相关试题

如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.
(1)填空:甲、丙两地距离 千米.
(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.

如图1,点A(8,1)、B(n,8)都在反比例函数(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.
(1)求m的值和直线AB的函数关系式;
(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.
①设△OPQ的面积为S,写出S与t的函数关系式;
②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.


在矩形中,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上一点,过点的反比例函数图象与边交于点
(1)请用k表示点E,F的坐标;
(2)若的面积为,求反比例函数的解析式.

为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.
(1)y与x的函数关系式为:
(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.


如图,在平面直角坐标系中,抛物线与⊙M相交于A、B、C、D四点。其中AB两点的坐标分别为(-1,0),(0,-2),点D在轴上且AD为⊙M的直径。点E是⊙M与轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5。

(1)求点D的坐标及该抛物线的表达式;
(2)若点P是轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号