已知函数 .
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线 的切线.
已知椭圆(
>
>0)的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点
,已知点
的坐标为(
,0),点
(0,
)在线段
的垂直平分线上,且
,求
的值.
在数列和
中,已知
.
(1)求数列和
的通项公式;
(2)设,求数列
的前n项和
.
已知四棱锥的底面
是等腰梯形,
且
分别是
的中点.
(1)求证:;
(2)求二面角的余弦值.
已知向量,
,且
.
(1)将表示为
的函数
,并求
的单调递增区间;
(2)已知分别为
的三个内角
对应的边长,若
,且
,
,求
的面积.
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数为奇函数,求实数
的值;
(2)在(1)的条件下,求函数在区间
上的所有上界构成的集合;
(3)若函数在
上是以3为上界的有界函数,求实数
的取值范围.