给定无穷数列 ,若无穷数列{b n}满足:对任意 ,都有 ,则称 "接近"。
(1)设 是首项为1,公比为 的等比数列, , ,判断数列 是否与 接近,并说明理由;
(2)设数列 的前四项为: =1, =2, =4, =8, 是一个与 接近的数列,记集合M={x|x=b i, i=1,2,3,4},求M中元素的个数m;
(3)已知 是公差为d的等差数列,若存在数列{b n}满足:{b n}与 接近,且在b₂-b₁,b₃-b₂,…b 201-b 200中至少有100个为正数,求d的取值范围。
已知是等比数列{
}的前
项和,
、
、
成等差数列.
(Ⅰ)求数列{}的公比
;
(Ⅱ)求证、
、
成等差数列.
已知椭圆C的两焦点分别为,长轴长为6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度.
在中,内角
对边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
已知椭圆的中心为坐标原点O,焦点在
轴上,离心离为
,点B是椭圆短轴的下端点. B到椭圆一个焦点的距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线
与椭圆
交于
,
两点,且
,求直线
的方程.
投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n年的纯利润总和(
前
年总收入 前
年的总支出 投资额72万元)
(Ⅰ)该厂从第几年开始盈利?
(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.