已知 { x n } 是各项均为正数的等比数列,且 x 1 + x 2 = 3 , x 3 ﹣ x 2 = 2 .
(Ⅰ)求数列 x n 的通项公式;
(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点 P 1 ( x 1 , 1 ) , P 2 ( x 2 , 2 ) … P n + 1 ( x n + 1 , n + 1 ) 得到折线 P 1 P 2 … P n + 1 , 求由该折线与直线 y = 0 , x = x 1 , x = x n + 1 所围成的区域的面积 T n .
已知圆. (1)此方程表示圆,求的取值范围; (2)若(1)中的圆与直线相交于、两点,且(为坐标原点),求的值; (3)在(2)的条件下,求以为直径的圆的方程.
(本题10分)如图所示,在直三棱柱中,,,、分别为、的中点. (Ⅰ)求证:; (Ⅱ)求证:.
如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点. (1)求证:∥底面; (2)若点为线段的中点,求三角形的面积。
已知数列的前项和。 (1)求数列的通项公式; (2)求的最值。
等差数列中,已知,,,求n.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号