设函数 f ( x ) = e x cos x , g ( x ) 为 f x 的导函数.
(Ⅰ)求 f x 的单调区间;
(Ⅱ)当 x ∈ π 4 , π 2 时,证明 f ( x ) + g ( x ) π 2 - x ≥ 0 ;
(Ⅲ)设 x n 为函数 u ( x ) = f ( x ) - 1 在区间 2 nπ + π 4 , 2 nπ + π 2 内的零点,其中 n ∈ N ,证明 2 nπ + π 2 - x n < e - 2 nπ sin x 0 - cos x 0 .
.(坐标系与参数方程选讲选做题)在直角坐标系中曲线的极坐标方程为,写出曲线的直角坐标方程.
(二)选做题(14~15题,考生只能从中选做一题) (几何证明选讲选做题)如图,是⊙的直径,是延长线上的一点,过作⊙的切线,切点为,,若,则⊙的直径.
函数的定义域为.
在中,已知,则的最大角的大小为.
已知集合,,且,则实数a的取值范围__ 。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号