如图, 是四边形 ABCD 的对角线, ,点 、 分别在 、 上, , ,连接 .
( 1 )求证: ;
( 2 )若 ,求 的度数.
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1㎝,求BD的长.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如果二次函数的二次项系数为l,则此二次函数可表示为,我们称[p,q]为此函数的特征数,如函数
的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将
视为一个整体,然后设
,则原方程可化为
①
解得,
,当y=1时,
,∴
,
;
当y=4时,,∴
,
,∴原方程的解为
=
,
=-
,
=
,
=-
.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程.
如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.
(1)在图中标出旋转中心P的位置,并写出它的坐标;
(2)在图上画出再次旋转后的三角形④.