中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:
原文 |
释义 |
甲乙丙为定直角. 以乙为圆心,以任何半径作丁戊弧; 以丁为圆心,以乙丁为半径画弧得交点己; 再以戊为圆心,仍以原半径画弧得交点庚; 乙与己及庚相连作线. |
如图2,∠ABC为直角, 以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E; 以点D为圆心,以BD长为半径画弧与 交于点F; 再以点E为圆心,仍以BD长为半径画弧与 交于点G; 作射线BF,BG. |
(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);
(2)根据(1)完成的图,直接写出 的大小关系.
现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.
(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;
(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.
①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;
②当x的值至少为多少时,商店才不会亏本.
(注:按整箱出售,利润=销售总收入﹣进货总成本)
如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.
(1)求证:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)
如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.
近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图:
根据以上图表信息,解答下列问题:
(1)统计表中的m=;
(2)统计图中表示“影响不大”的扇形的圆心角度数为度;
(3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?
解分式方程:.