如图,在平面直角坐标系中,抛物线 经过点 和点 ,与 轴的另一个交点为 ,与 轴交于点 ,作直线 .
(1)①求抛物线的函数表达式;
②直接写出直线 的函数表达式;
(2)点 是直线 下方的抛物线上一点,连接 交 于点 ,连接 , 的面积记为 , 的面积记为 ,当 时,求点 的坐标;
(3)点 为抛物线的顶点,将抛物线图象中 轴下方的部分沿 轴向上翻折,与抛物线剩下的部分组成新的曲线记为 ,点 的对应点为 ,点 的对应点为 ,将曲线 沿 轴向下平移 个单位长度 .曲线 与直线 的公共点中,选两个公共点记作点 和点 ,若四边形 是平行四边形,直接写出点 的坐标.
如图,正△ABC中,∠ADE=60°,
(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.
某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租凭机器自己加工,所需费用y2(包括租凭机器的费用和生产包装盒的费用)
与包装盒数满足如图的函数关系。
根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租凭机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,y2,与x的函数表达式
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。
某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
如图,已知一次函数与
的图象相交于A点,函数
的图象分别交
轴、
轴于点B,C,函数
的图象分别交
轴、
轴于点E,D.
(1)求A点的坐标;
(2)求的面积
画出函数的图象,利用图象:
(1)求方程的解;
(2)求不等式的解;
(3)若,求
的取值范围。