如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2, 是灯杆, 是灯管支架,灯管支架 与灯杆间的夹角 .综合实践小组的同学想知道灯管支架 的长度,他们在地面的点 处测得灯管支架底部 的仰角为 ,在点 处测得灯管支架顶部 的仰角为 ,测得 ( 在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度 的长(结果保留根号);
(2)求灯管支架 的长度(结果精确到 ,参考数据: ).
某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售
做了统计,并绘制成如下两幅统计图(如图)。(1)该专卖店1~4月共销售这种品牌的手机_________台;
(2)请将条形统计图补充完整;
(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是_________;
(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是_________台。
如图,梯形ABCD中,AB∥CD,∠DAB=90°,F是BC的中点,
连接DF并延长DF交AB于点E,连接AF。(1)求证:△CDF≌△BEF;
(2)若∠E=28°,求∠AFD的度数。
解方程:。
如图,在平面直角坐标系中,直线分别交
轴,
轴于
两点,以
为边作矩形
,
为
的中点.以
,
为斜边端点作等腰直角三角形
,点
在第一象限,设矩形
与
重叠部分的面积为
.
(1)求点
的坐标;
(2)当
值由小到大变化时,求
与
的函数关系式;
(3)若在直线
上存在点
,使
等于
,请直接写出
的取值范围;
(4)在
值的变化过程中,若
为等腰三角形,且
PC=PD,请直接写出的值.
已知:如图①,正方形ABCD中,E为对角线BD上一点,
过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)