新定义:我们把抛物线 y = a x 2 + b x + c (其中 a b ≠ 0 )与抛物线 y = b x 2 + a x + c 称为“关联抛物线”.例如:抛物线 y = 2 x 2 + 3 x + 1 的“关联抛物线”为: y = 3 x 2 + 2 x + 1 .已知抛物线 C 1 : y = 4 a x 2 + a x + 4 a ﹣ 3 ( a ≠ 0 ) 的“关联抛物线”为 C 2 .
(1)写出 C 2 的解析式(用含 a 的式子表示)及顶点坐标;
(2)若 a > 0 ,过 x 轴上一点 P ,作 x 轴的垂线分别交抛物线 C 1 , C 2 于点 M , N .
①当 M N = 6 a 时,求点 P 的坐标;
②当 a ﹣ 4 ≤ x ≤ a ﹣ 2 时, C 2 的最大值与最小值的差为 2 a ,求 a 的值.
设y1,y2,当x为何值时,y1与y2互为相反数?
如图,请画出该几何体的主视图和左视图.
先化简,再求值:,其中.
解方程(每题6分,共12分) (1) (2)
如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程组的解,点C是直线与直线AB的交点,点D在线段OC上,OD= (1)求点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号