在平面直角坐标系 中,抛物线 与 轴交于 两点.
(1)求抛物线的解析式及点 的坐标;
(2)当 时的函数图象记为 ,求此时函数 的取值范围;
(3)在(2)的条件下,将图象 在 轴上方的部分沿 轴翻折,图象 的其余部分保持不变,得到一个新图象 .若经过 点的直线 与图象 在第三象限内有两个公共点,结合图象,求 的取值范围.
先化简,再求值:(-
)÷
,其中x=
.
如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上第二象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)如图1,已知△ABC,以AB,AC为边向△ABC外做等边△ABD和等边△ACE.连接BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹)
(2)如图2,已知△ABC,以AB,AC为边向外做正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由.
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=10米,AC=AE.求BE的长.
如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.
如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径.