已知抛物线 y = - 2 x 2 + bx + c 经过点 0 , - 2 ,当 x < - 4 时, y 随 x 的增大而增大,当 x > - 4 时, y 随 x 的增大而减小.设 r 是抛物线 y = - 2 x 2 + bx + c 与 x 轴的交点(交点也称公共点)的横坐标, m = r 9 + r 7 - 2 r 5 + r 3 + r - 1 r 9 + 60 r 5 - 1 .
(1)求 b , c 的值;
(2)求证: r 4 - 2 r 2 + 1 = 60 r 2 ;
(3)以下结论: m < 1 , m = 1 , m > 1 ,你认为哪个正确?请证明你认为正确的那个结论.
求不等式组的正整数解.
如图,在△ABC中,D是边AB的中点,DE∥BC交AC于点E.求证:AE=EC
如图,AE是正方形ABCD中∠BAC的角平分线,AE分别交BD、BC于点F、E,AC与BD交于点O,求证:OF=CE
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED的面积.
如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号