游客
题文

如图所示,在 ABC 中, C = 90 , BAC = 30 , BC = 1 , D BC 边上一点, tan ADC 是方程 3 x 2 + 1 x 2 - 5 x + 1 x = 2 的一个较大的根,求 CD 的长

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.

(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.
(2)如图2,当α=°时,BA′与半圆O相切.当α=°时,点O′落在上.
(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.

如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(-1)nx2+bx+c(n为整数).
(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;
(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;
(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.

如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.

(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:四边形ABFE是菱形.

已知:如图,在平面直角坐标系中,直线AB与反比例函数y=(m>0)的图象交与点A(1,4)、B(a、b),q其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接CD.

(1)求该反比例函数的解析式;
(2)求证:CD∥AB.

已知代数式,请解答下列问题:
(1)当x=2sin30°+tan60°时,求原代数式的值;
(2)当x在实数范围内取值时,原代数式的值能等于-1吗?说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号