游客
题文

如图①,在四边形 ABCD 中, AB = CD E F 分别是 BC AD 的中点,连接 EF 并延长,分别与 BA CD 的延长线交于点 M N ,则 BME = CNE .

(温馨提示:在图①中,连接 BD ,取 BD 的中点 H ,连接 HE HF ,根据三角形中位线定理,证明 HE = HF ,从而 1 = 2 ,再利用平行线性质,可证 BME = CNE .)

(1)如图②,在四边形 ADBC 中, AB CD 相交于点 O AB = CD E F 分别是 BC AD 的中点,连接 EF ,分别交 DC AB 于点 M N ,判断 OMN 的形状,并给予证明;

(2)如图③,在 ABC 中, AC > AB D 点在 AC 上, AB = CD E F 分别是 BC AD 的中点,连接 EF 并延长,与 BA 的延长线交于 G ,若 EFC = 60 ,连接 GD ,判断 AGD 的形状并证明.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°。

(1)求一楼于二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249。

如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

(1)计算:;(2)解不等式组:

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号