某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按 个工时计算)生产空调器、彩电、冰箱共 台,且冰箱至少生产 台,已知生产这些家电产品所需工时和每台产值如下表:
问:每周生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(单位:千元)?
某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量(件)与销售单价
(元)之间满足
(20≤
≤40),设销售这种产品每天的利润为W(元).
(1)求销售这种产品每天的利润W(元)与销售单价(元)之间的函数表达式;
(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少元?
如图,正比例函数的图象与反比例函数
的图象分别交于M,N两点,已知点M(-2,m).
(1)求反比例函数的表达式;
(2)点P为y轴上的一点,当∠MPN为直角时,直接写出点P的坐标.
如图,矩形ABCD中,AP平分∠DAB,且AP⊥DP于点P,联结CP,如果AB﹦8,AD﹦4,求sin∠DCP的值.
已知二次函数.
(1)把这个二次函数化成的形式;
(2)画出这个二次函数的图象,并利用图象写出当x为何值时,.
如图,已知抛物线与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C(0,-3),其顶点为D,对称轴为直线
.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标;
(3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG与△BCD重叠部分的面积记为S,用含m的代数式表示S.